SOME GENERALIZATIONS OF THE PROBLEM OF
SPHERICAL VORTICES
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A generalization of Hill's solution [2], in which the velocity field is essentially three-dimensional with
retention of cylindrical symmetry and the potentiality of the external streamline flow, is given in [1].

In the present report a vortex formation is constructed consisting of three-dimensional vortex flow in
the gaps between concentric spheres of arbitrary radii and in the inmer sphere for different dependences of the
Bernoulli integral and the circulation on the stream function (according to [3], these functions depend only on
the stream function). ‘

Without a limitation of generality, let us consider vortex formations consisting of two flows: one in the
gap between concentric spheres with radii ¢ and a; (¢ > 4;) and the other in the inner sphere (the first flow will -
be called the outer vortex and the second, the inner vortex), moving with a constant velocity u in a fluid qui-
escent at infinity.

In spherical coordinates the dimensionless stream function 94(p, #) of flow by a potential stream over a
sphere has the form [4]

Volp, 0) = (1/2)pH1 — 1/p°) sin® .
Here and later all the quantities are reduced to dimensionless form (using the scale u, a).

Let us consider the vortex flow within concentric spheres with the circulation T'(j} and the Bernoulli
integral F () in the form

E()=—F(¥), F(§)= A + 4,4<0, T) =k, 47, A;, k; = const. (1)
The constant ki is connected with Aj; this connection is discussed below.

With allowance for (1) the equations and boundary conditions for the stream function in a spherical co-
ordinate system rigidly connected with the vortex formation have the form [3]
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where ;j_1(p, #) is the stream function for the external streamline flow. The boundary conditions consist of the
conditions of nonpenetration at the surfaces p = pi and p = p; and equality of the axial velocity at the surface
o= pi. Equality of the azimuthal and radial velocities is automatically satisfied. Hence, for the vortex flow in
the gap between the spheres (i = 1) we have
, 3
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The solution of the problem (2) is sought in the form ¥(p, &) = £(p) sin’#, and then the expression for the stream
function of the outer vortex has the form
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Let us congider the flow in the inner sphere (i = 2); then
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From Egs. (4) it is seen that the same functions T'() and F(y) in the two vortices are possible only when
fkigk) = 1. As py— 0, Egs. (3) change into the expressions obtained in [1].

A numerical calculation of the flow within the vortex formation under consideration was carried out on
the basis of (3) and 4).

The streamlines for equally spaced values of § are plotted in Fig. 1 for the case of k; =k; = 1 and gy =
0.5. The largest absolute values of the stream function in the inner and outer vortices are reached at the
points (0.25, v/ 2) and (0.62, 7/2), respectively. These are not critical pomts since the azimuthal velocity
components are different from zero.

The distribution of the azimuthal velocity component is given in Fig. 2. The largest absolute value of
Vo is reached at the points (0,05, 7/2) and (0,62, 7/2) for the imer and outer vortices, respectively:

Womax | = 1.69 and {Uomayx | = 0.3.
Taking A, —0 in Egs. (4), we obtain
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where k, are the positive roots of the equation J3/5(kspy) = 0. Thus, a vortex formation is constructed in which

the flow in the outer vortex is described by Eq. (3), while in the inner vortex there is uniform helical flow.

If k, = vy is the m-th positive root of the equation J3/,(k;0) = 0, then the inner vortex divides into m isclated

vortices which lie in the gaps between concentric spheres with radii p; = v{/vm, while the functions I'(p) and
F(¥) are the same in all the vortices. From Eq. (3) it is seen that the flow in the outer vortex is uniform heli-

cal flow when A; = 0. Then the stream function has the form
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where k, is the m-th positive root of the transcendental equation
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Now if gy in Eq. (5) is replaced by
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then we construct a vortex formation for which there is uniform helical flow described by Egs. (6) and the mod-
ified Eq. (5) in the outer and inner vortices.

The case of kj = 0 corresponds to two~dimensional flow in the vortices, i.e., the azimuthal velocity com-
ponent is absent, We write the solutions of the problem (3) with ki = 0 for the inner and outer vortices, re-
spectively, as :

¥(p, 0) = fgg[p‘ — pip*|sin® 6 M
3,2
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If we replace gy by g, or by
g3 = m:—ip(l — 03} o — (95 — 1) gy + (58 1) 40i]

in Eq. (7), then the outer vortex is assigned by Eq. (6) or (8) while the inner vortex is assigned by the modified
Eq. (7). Replacing g; by g3 in Eqs. (4), we obtain two-dimensional vortex flow in the outer vortex and three-
dimensional vortex flow or uniform helical flow, respectively, in the inner vortex.

The problem of the potential flow over a vortex formation consisting of m vortices lying in the gaps be-
‘tween concentric spheres of arbitrary radii with distribution functions in the form (1) in each vortex can be
solved analogously. If the functions are assigned in the form (1), then one can be confined to the requirement
that the stream functions at the surfaces of the concentric spheres be constants, with the exception of the outer
sphere, and then the azimuthal velocities at these surfaces will differ from zero and k; = k.

The author thanks Yu. S. Ryazantsev and Yu. P. Gupalo for valuable comments and a discussion of the
work.
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